

A Practical Introduction to ALMA Correlator and Spectral Line Observations

Sheng-Yuan Liu

Receiver Bands

Table 2 Summary of ALMA receivers

Band no.	Frequency range (GHz)	Receiver noise temperature ^a (K)	Mixing scheme	IF Bandwidth	
3	NA (HIA)	84–116	37	2SB	4 GHz
4	EA (NAOJ)	125–169	51	2SB	4 GHz
5 ^b	EU (OSO), 6?	163–211	65	2SB	4 GHz
6	NA (NRAO)	211–275	83	2SB	8 GHz
7	EU (IRAM)	275–373	147	2SB	4 GHz
8	EA (NAOJ)	385–500	98	2SB	4 GHz
9	EU (SRON)	602–720	175	DSB	8 GHz
10 ^b	EA (NAOJ)	787–950	230	DSB	8 GHz

^aOver 80% of the band, specification. Preproduction units tested to date have been outperforming their specifications

^bAt first light, these bands will be available on fewer than all of the antennas in the array

Receiver Bands

Table 2 Summary of ALMA receivers

Band no.	Frequency range (GHz)	Receiver noise temperature ^a (K)	Mixing scheme	IF Bandwidth	
3	NA (HIA)	84–116	37	2SB	4 GHz
4	EA (NAOJ)	125–169	51	2SB	4 GHz
5 ^b	EU (OSO), 6?	163–211	65	2SB	4 GHz
6	NA (NRAO)	211–275	83	2SB	8 GHz
7	EU (IRAM)	275–373	147	2SB	4 GHz
8	EA (NAOJ)	385–500	98	2SB	4 GHz
9	EU (SRON)	602–720	175	DSB	8 GHz
10 ^b	EA (NAOJ)	787–950	230	DSB	8 GHz

^aOver 80% of the band, specification. Preproduction units tested to date have been outperforming their specifications

^bAt first light, these bands will be available on fewer than all of the antennas in the array

Reference : Wootten (2008), ASS, 313, 9

Receiver Bands

Table 2 Summary of ALMA receivers

Band no.	Frequency range (GHz)	Receiver noise temperature ^a (K)	Mixing scheme	IF Bandwidth	
3	NA (HIA)	84–116	37	2SB	4 GHz
4	EA (NAOJ)	125–169	51	2SB	4 GHz
5 ^b	EU (OSO), 6?	163–211	65	2SB	4 GHz
6	NA (NRAO)	211–275	83	2SB	8 GHz
7	EU (IRAM)	275–373	147	2SB	4 GHz
8	EA (NAOJ)	385–500	98	2SB	4 GHz
9	EU (SRON)	602–720	175	DSB	8 GHz
10 ^b	EA (NAOJ)	787–950	230	DSB	8 GHz

^aOver 80% of the band, specification. Preproduction units tested to date have been outperforming their specifications

^bAt first light, these bands will be available on fewer than all of the antennas in the array

Reference : Wootten (2008), ASS, 313, 9

Correlator

- Two correlators (nearly identical in functionality and parallel in operation)
 - “ALMA (Baseline) Correlator” by NRAO for the 12 m Array (+ ACA antennas)
 - (F)XF
 - “ACA Correlator” by NAOJ for ACA
 - FX
 - This introduction mainly talks about ALMA (Baseline) Correlator, but for users, both correlators should behave/interface in the same way.

ALMA

The ALMA Correlator:

- 32 main racks with 3,000 printed circuit cards
(4 identical but independent quadrant; 8 racks per quadrant)
- a total of 135,000 complex integrated circuits
- factor of 15,000 larger than the VLA correlator
- overall system dissipation: 170,000 W
- ~ 70 operation modes (5 modes [#7, 9, 12, 18, & 70 @ ES])
 - one quadrant (processing per baseband pair)

power supply

station racks

correlator racks

station racks computer

ALMA Correlator Modes

Table 1 Mode chart with one baseband channel per quadrant being processed

Mode #	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
1	32	2 GHz	8192	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
19	32	2 GHz	4096	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
38	32	2 GHz	2048	976 kHz	1.28 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
2	16	1 GHz	8192	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
20	16	1 GHz	4096	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
39	16	1 GHz	2048	488 kHz	0.64 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
53	16	1 GHz	1024	976 kHz	1.28 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
3	8	500 MHz	8192	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
21	8	500 MHz	4096	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
40	8	500 MHz	2048	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
54	8	500 MHz	1024	488 kHz	0.64 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
4	4	250 MHz	8192	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
22	4	250 MHz	4096	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
41	4	250 MHz	2048	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
55	4	250 MHz	1024	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
5	2	125 MHz	8192	15 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
23	2	125 MHz	4096	30 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
42	2	125 MHz	2048	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
56	2	125 MHz	1024	122 kHz	0.16 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
6	1	62.5 MHz	8192	7.6 kHz	0.01 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
24	1	62.5 MHz	4096	15 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
43	1	62.5 MHz	2048	30 kHz	0.04 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
57	1	62.5 MHz	1024	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
25	1	31.25 MHz	8192	3.8 kHz	0.005 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
58	1	31.25 MHz	2048	15 kHz	0.02 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
68	Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	3-bit x 3-bit	Nyquist	16 msec	1.00
71	Time Division Mode	2 GHz	256	7.8125 MHz	10.2 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

**Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Reference : ALMA Memo, 556

ALMA Correlator Modes

Table 2 Mode chart with two baseband channels per quadrant processed with no polarization cross products.

Mode #	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
7	32	2 GHz	4096	488 kHz	0.64 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
8	16	1 GHz	4096	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
26	16	1 GHz	2048	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
44	16	1 GHz	1024	976 kHz	1.28 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
9	8	500 MHz	4096	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
27	8	500 MHz	2048	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
45	8	500 MHz	1024	488 kHz	0.64 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
59	8	500 MHz	512	976 kHz	1.28 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
10	4	250 MHz	4096	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
28	4	250 MHz	2048	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
46	4	250 MHz	1024	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
60	4	250 MHz	512	488 kHz	0.64 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
11	2	125 MHz	4096	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
29	2	125 MHz	2048	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
47	2	125 MHz	1024	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
61	2	125 MHz	512	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
12	1	62.5 MHz	4096	15 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
30	1	62.5 MHz	2048	30 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
48	1	62.5 MHz	1024	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
62	1	62.5 MHz	512	122 kHz	0.16 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
31	1	31.25 MHz	4096	7.6 kHz	0.01 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
63	1	31.25 MHz	1024	30 kHz	0.04 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
69	Time Division Mode	2 GHz	128	15.6 MHz	20.4 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

**Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Reference : ALMA Memo, 556

ALMA Correlator Modes

Table 3 Mode chart with two baseband channels per quadrant processed with polarization cross products.

Mode #	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
13	32	2 GHz	2048	976 kHz	1.28 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
14	16	1 GHz	2048	488 kHz	0.64 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
32	16	1 GHz	1024	976 kHz	1.28 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
15	8	500 MHz	2048	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
33	8	500 MHz	1024	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
16	4	250 MHz	2048	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
34	4	250 MHz	1024	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
17	2	125 MHz	2048	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
35	2	125 MHz	1024	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
51	2	125 MHz	512	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
18	1	62.5 MHz	2048	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
36	1	62.5 MHz	1024	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
52	1	62.5 MHz	512	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
66	1	62.5 MHz	256	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
37	1	31.25 MHz	2048	15 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
67	1	31.25 MHz	512	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
70	Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

** Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Reference : ALMA Memo, 556

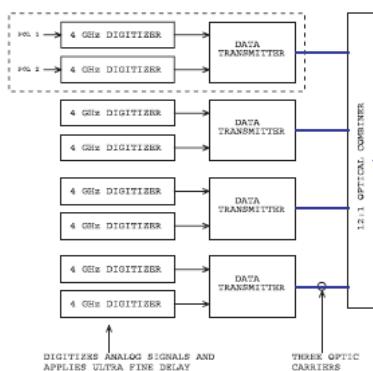
ALMA Correlator Modes

Table 3 Mode chart with two baseband channels per quadrant processed with polarization cross products.

Mode #	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
13	32	2 GHz	2048	976 kHz	1.28 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
14	16	1 GHz	2048	488 kHz	0.64 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
32									0.94
15									0.88
33									0.94
16									0.88
34									0.94
17									0.88
35	2	125 MHz	1024	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
51	2	125 MHz	512	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
18	1	62.5 MHz	2048	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
36	1	62.5 MHz	1024	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
52	1	62.5 MHz	512	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
66	1	62.5 MHz	256	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
37	1	31.25 MHz	2048	15 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
67	1	31.25 MHz	512	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
70	Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

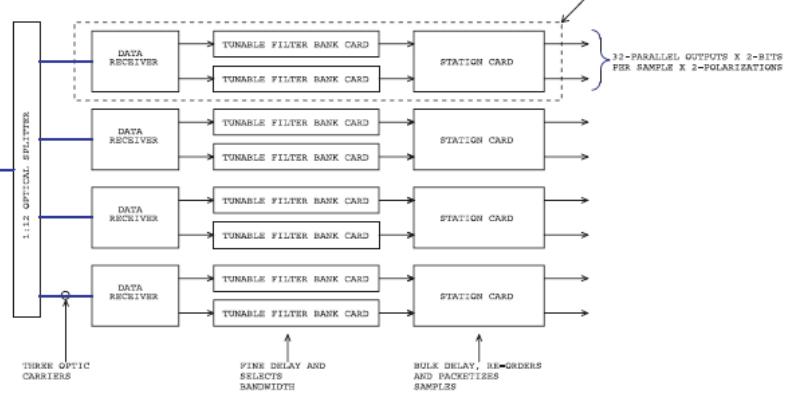
** Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

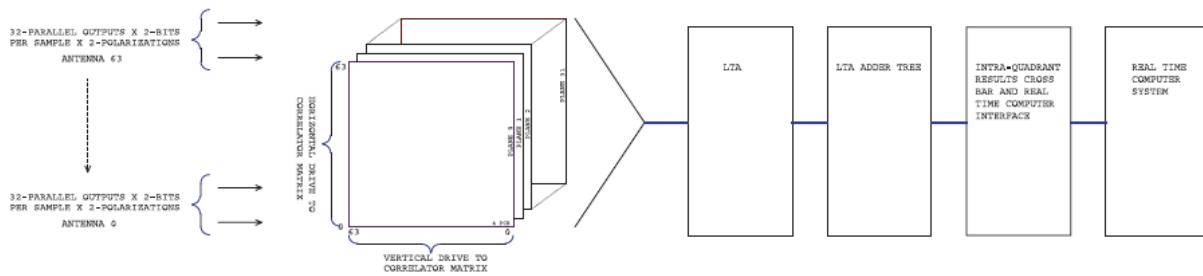

Purpose of this presentation :

To go through the basic picture and terminologies

Reference : ALMA Memo, 556

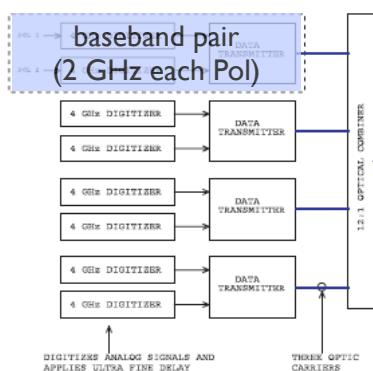
16 GHz bandwidth
per antenna


AT ANTENNA


ALMA Correlator Block Diagram

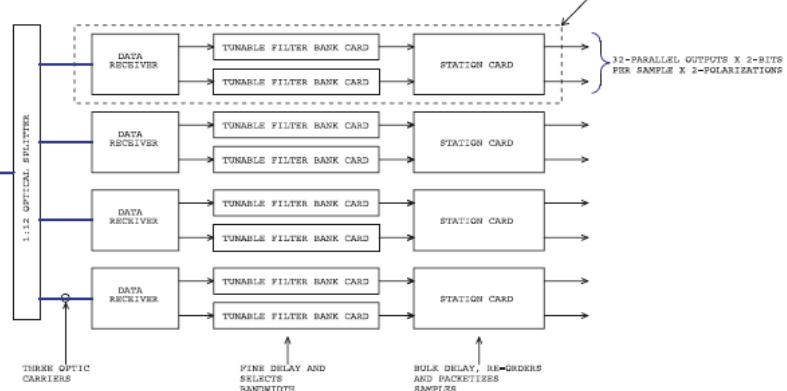
(antenna/station -based)

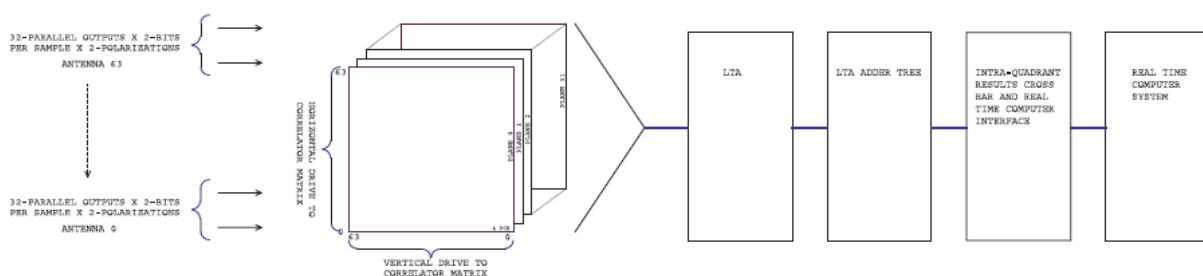
CORRELATOR STATION ELECTRONICS


(one quadrant) CORRELATOR BASELINE ELECTRONICS (baseline -based)

Reference : Escoffier (2007), A&A, 462, 801

16 GHz bandwidth
per antenna

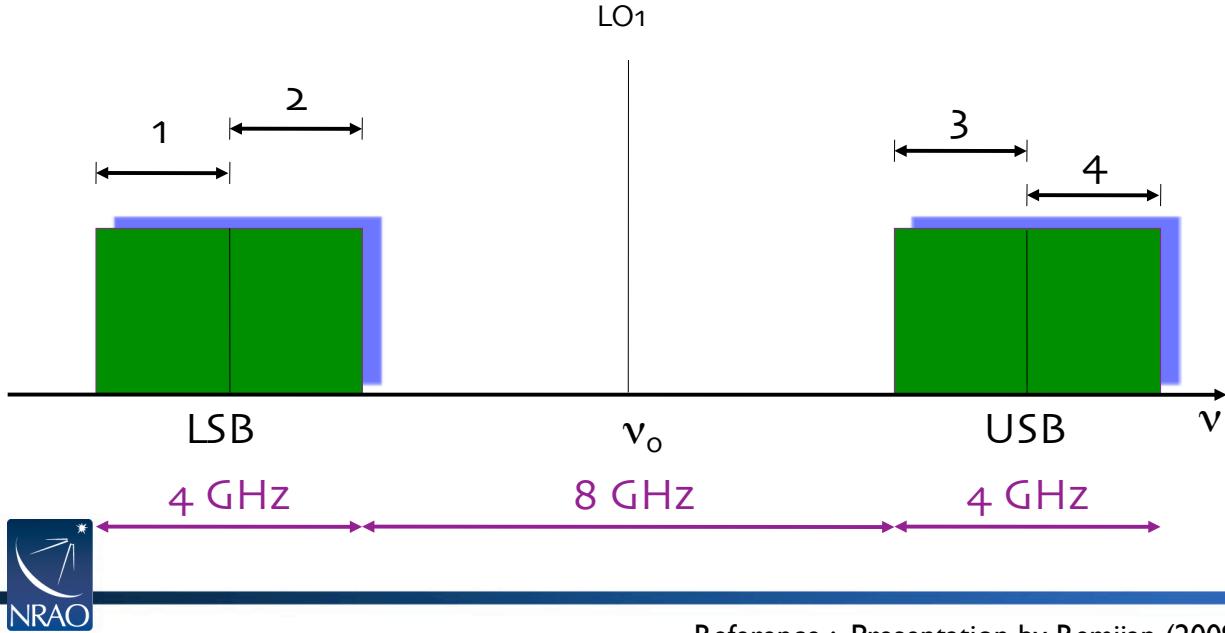

AT ANTENNA


ALMA Correlator Block Diagram

(antenna/station -based)

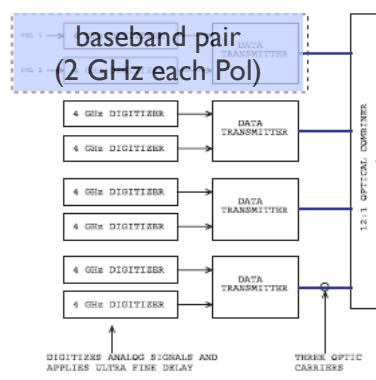
CORRELATOR STATION ELECTRONICS

(one quadrant) CORRELATOR BASELINE ELECTRONICS (baseline -based)

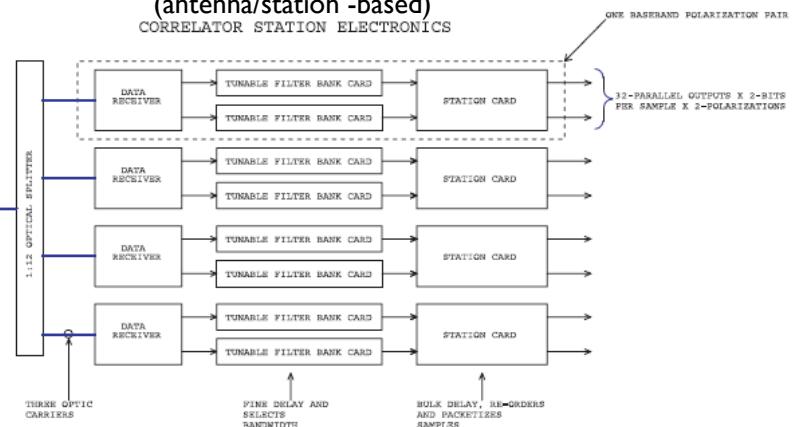

Reference : Escoffier (2007), A&A, 462, 801

Correlator Modes

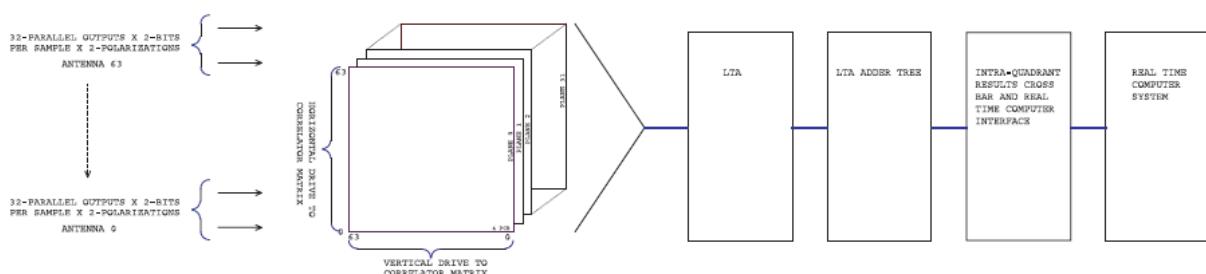
- baseband pairs from antennas are 2 GHz wide
- 4 baseband pairs are independently tunable


“baseband” - a bit similar to “block” in SMA

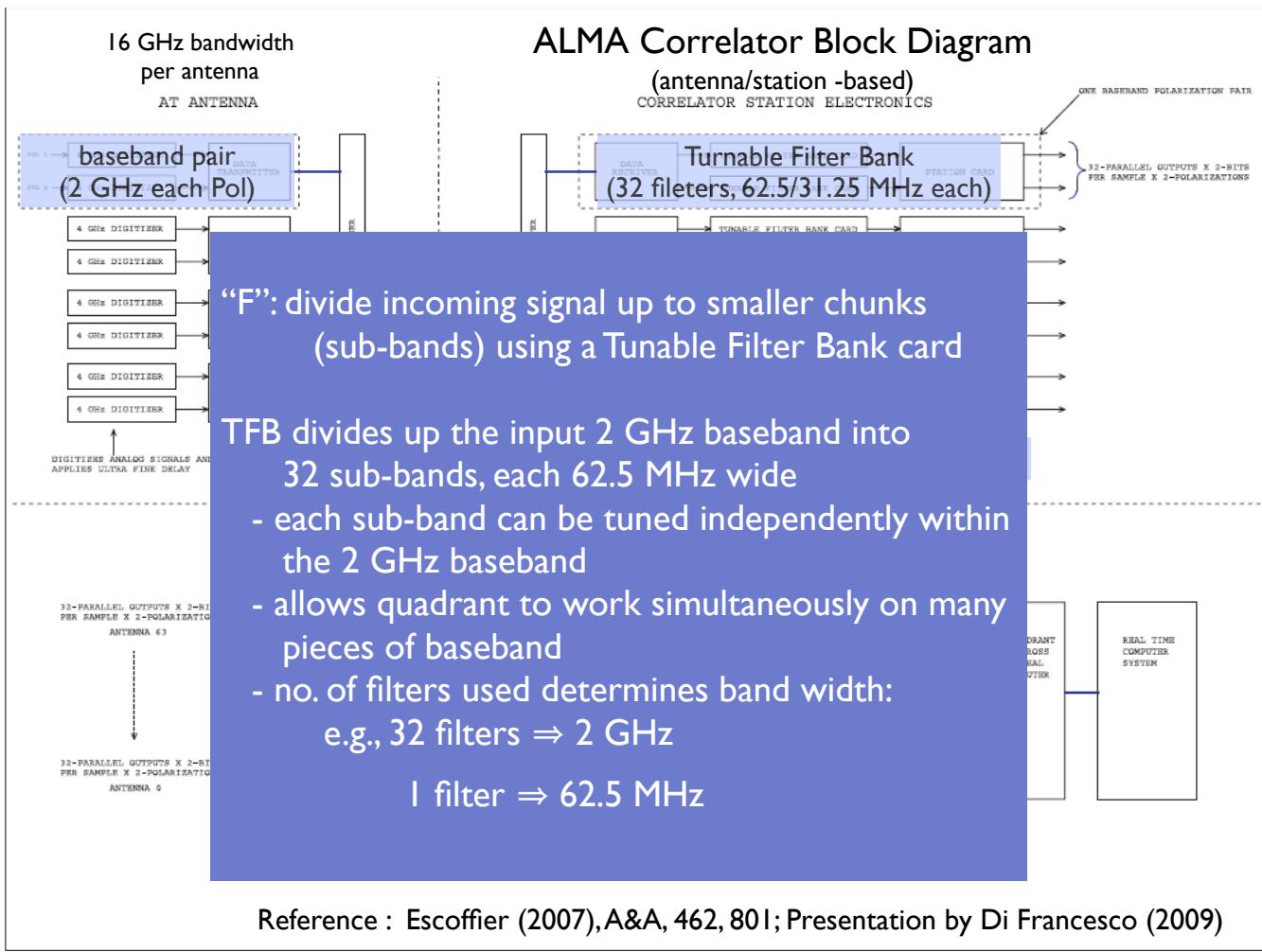
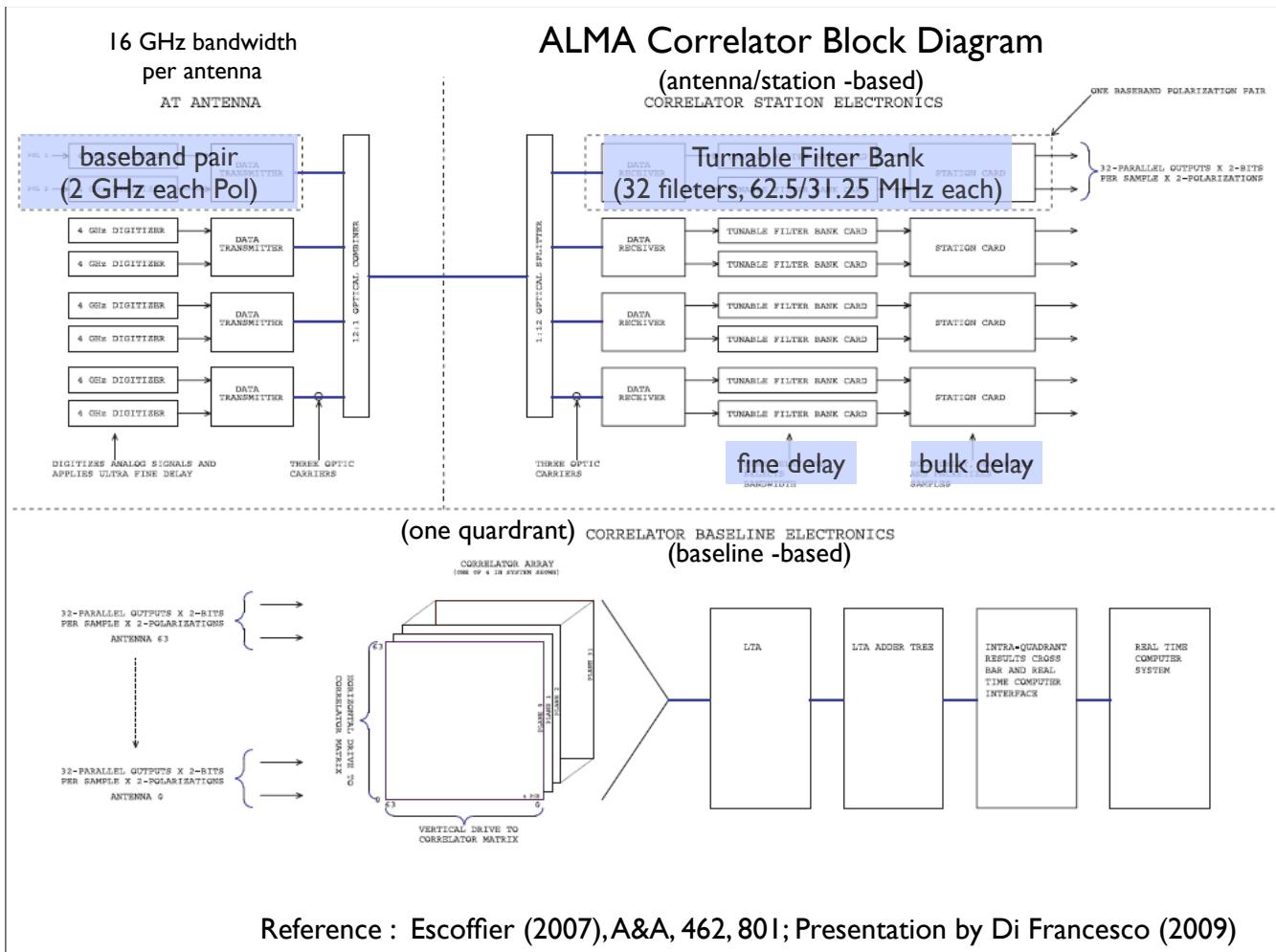
e.g., Band 3:

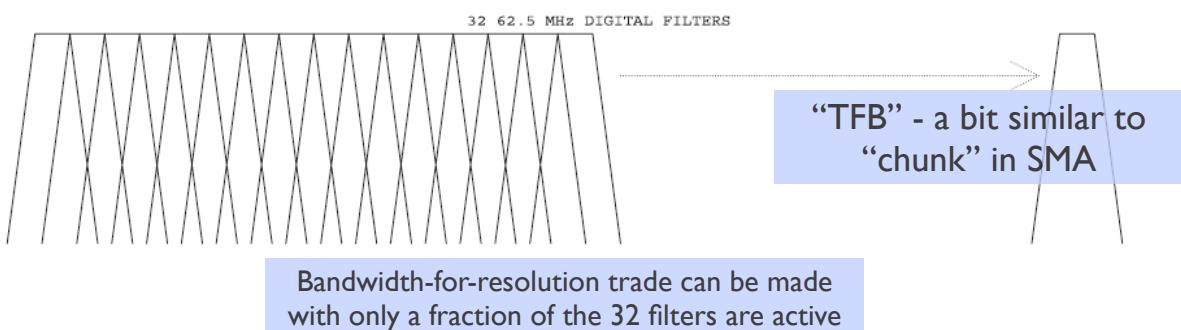
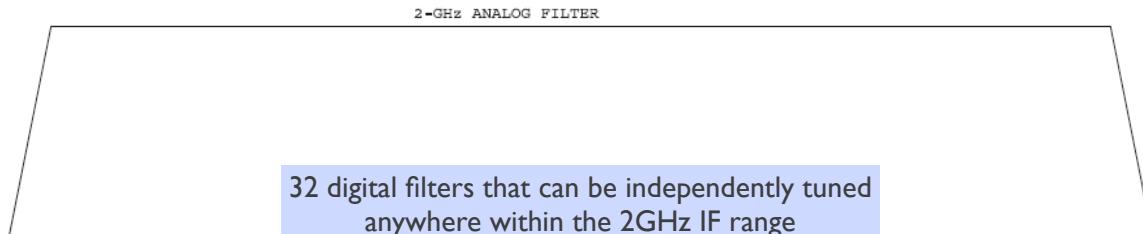

Reference : Presentation by Remijan (2009)

16 GHz bandwidth
per antenna
AT ANTENNA

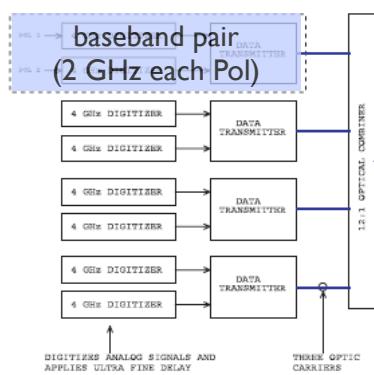


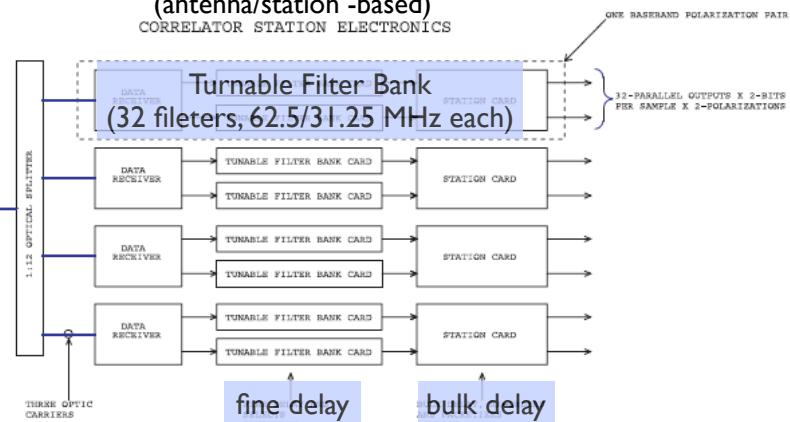
ALMA Correlator Block Diagram (antenna/station -based)



CORRELATOR STATION ELECTRONICS

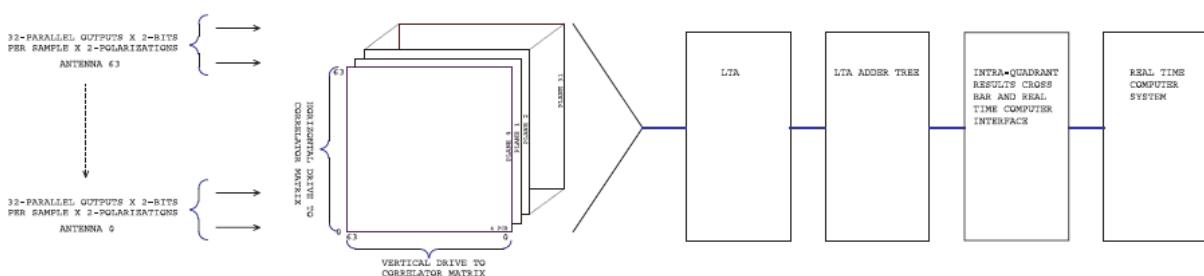



(one quadrant) CORRELATOR BASELINE ELECTRONICS (baseline -based)

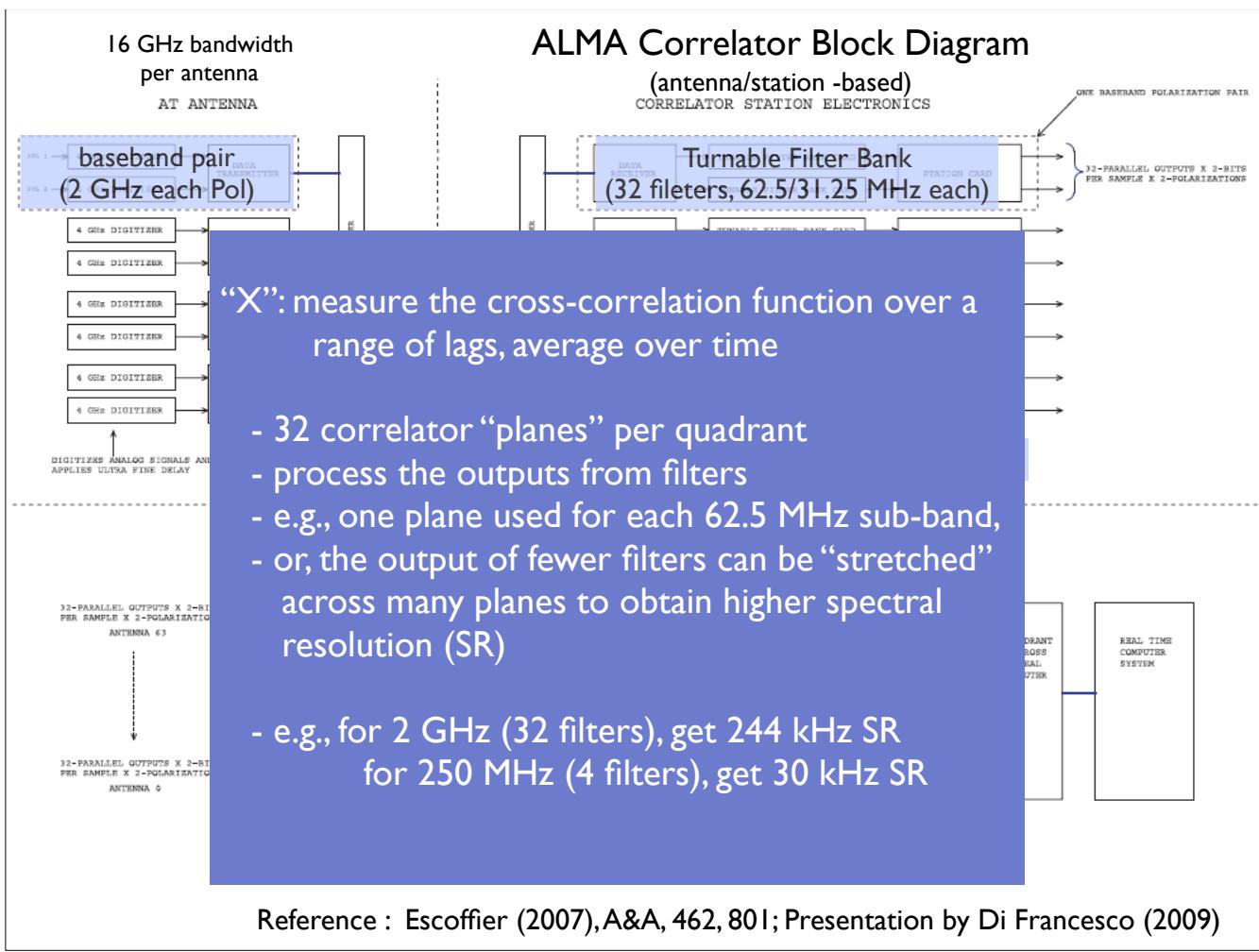

Reference : Escoffier (2007), A&A, 462, 801; Presentation by Di Francesco (2009)


Reference : Escoffier (2007), A&A, 462, 801

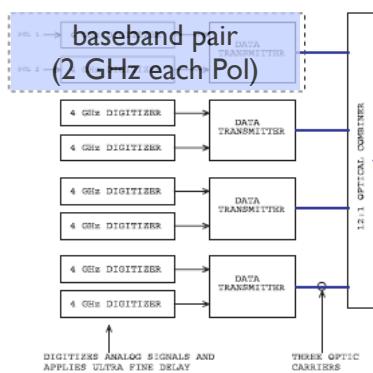
16 GHz bandwidth per antenna
AT ANTENNA


ALMA Correlator Block Diagram (antenna/station -based)

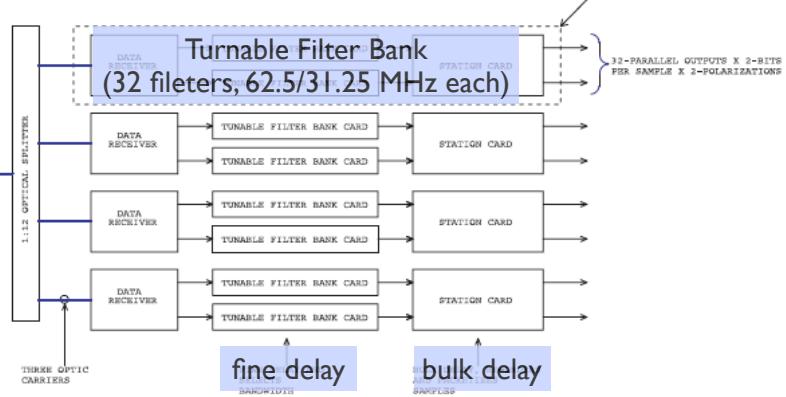
CORRELATOR STATION ELECTRONICS



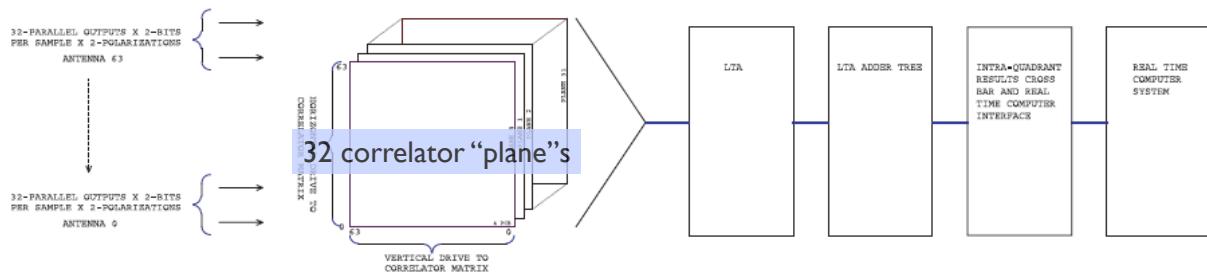
(one quadrant) CORRELATOR BASELINE ELECTRONICS (baseline -based)


CORRELATOR ARRAY
(ONE OF 4 IN SYSTEM)

Reference : Escoffier (2007), A&A, 462, 801; Presentation by Di Francesco (2009)

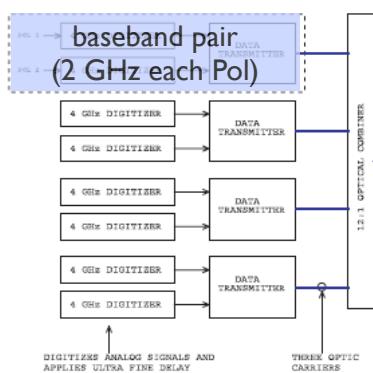


16 GHz bandwidth
per antenna
AT ANTENNA

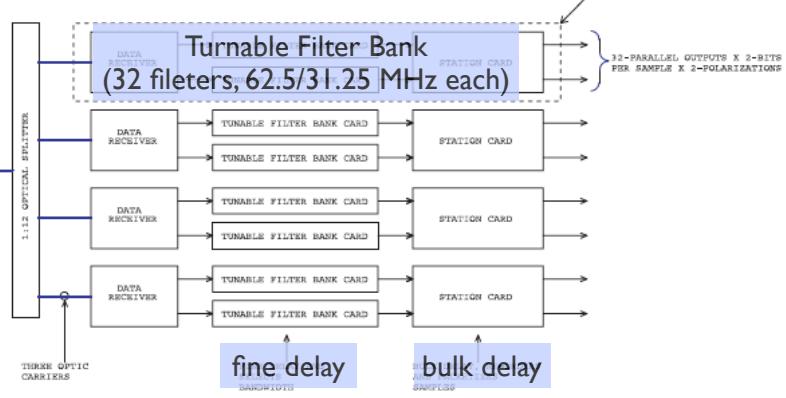


ALMA Correlator Block Diagram

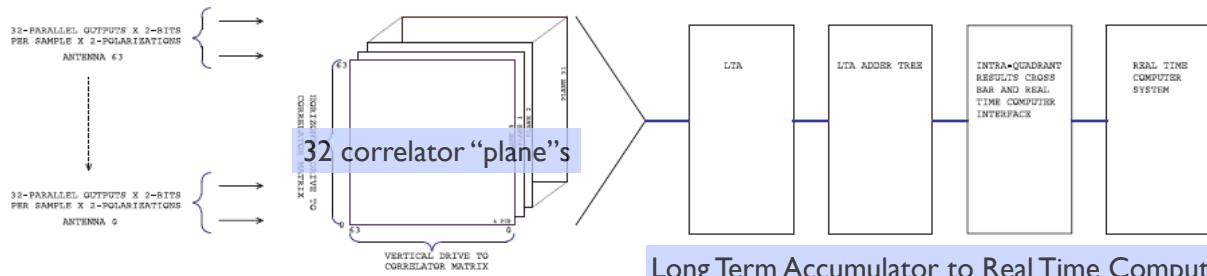
(antenna/station -based)
CORRELATOR STATION ELECTRONICS



(one quadrant) CORRELATOR BASELINE ELECTRONICS (baseline -based)

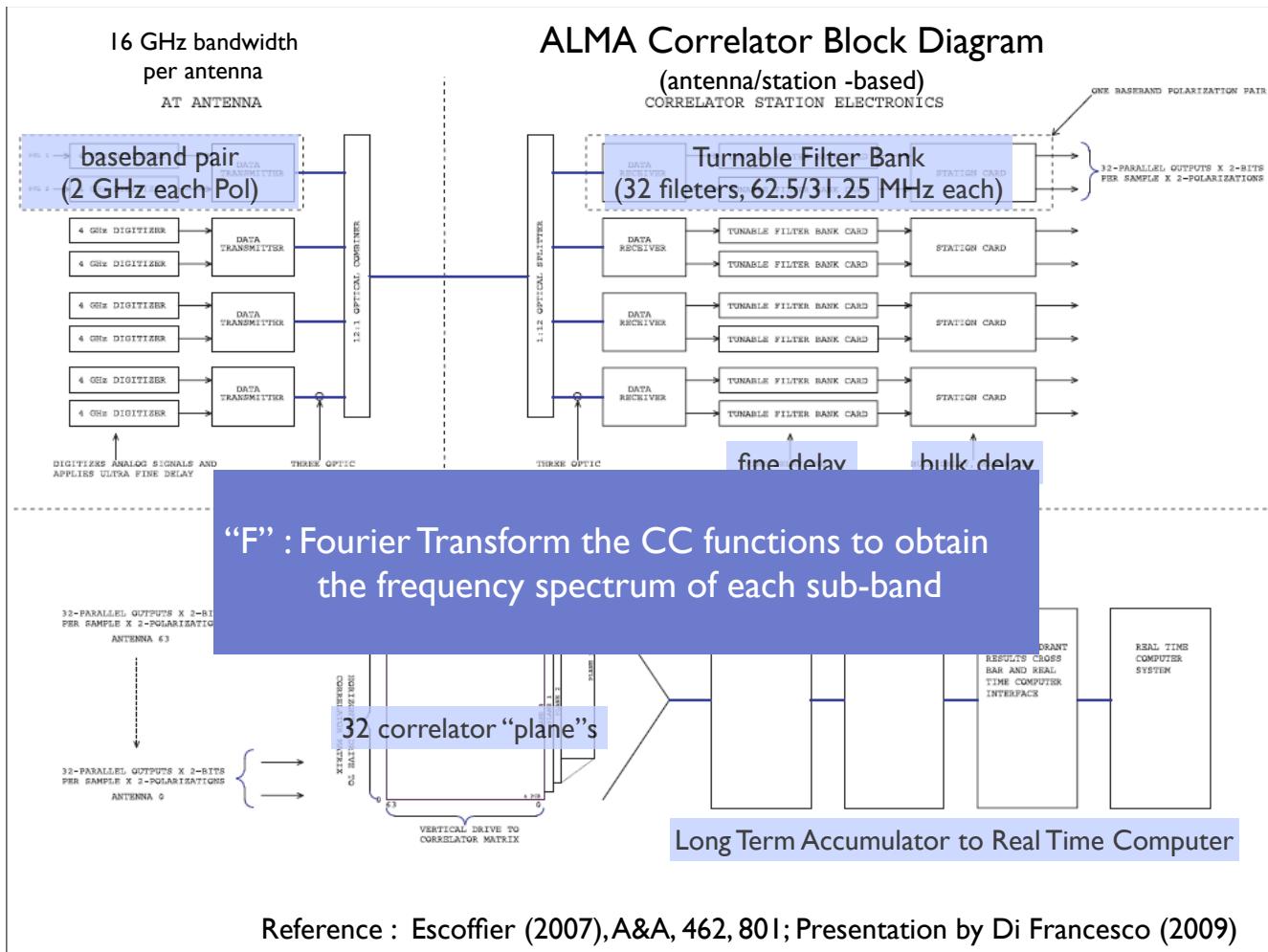

Reference : Escoffier (2007),A&A, 462, 801; Presentation by Di Francesco (2009)

16 GHz bandwidth
per antenna
AT ANTENNA



ALMA Correlator Block Diagram

(antenna/station -based)
CORRELATOR STATION ELECTRONICS



(one quadrant) CORRELATOR BASELINE ELECTRONICS (baseline -based)

Long Term Accumulator to Real Time Computer

Reference : Escoffier (2007),A&A, 462, 801; Presentation by Di Francesco (2009)

Correlator Modes

adapted to any type of line observations

Total BW covers all cases

from

- Pressure broadened lines in planets (**>2-3 GHz required**)
- Nearby galaxies (say < 200 Mpc) where we need $\Delta v_{\text{Max}} <$ or ~ 2000 km/s to map CO, CN, HCN, HNC => **BW ~ 0.6 to 6 GHz** in 90-950 GHz range

to

- Dark clouds where $\Delta v \sim 5$ km/s require **BW ~ 2 - 15 MHz** only, depending on ALMA band

Spectral line surveys or CO line search in high-z objects ... BW as large as possible: max provided 2, 4 or 8 GHz

Spectral Resolution covers all cases

- Narrow features ~ 0.02 - 0.05 km/s expected for *Wind velocities in Planets, Dark Molecular Clouds, Protostellar Disks* etc. => **~ 6 kHz** in Band 3 at 90 GHz
- Galaxies or *Energetic Outflows* ~ 1 MHz often sufficient

Reference : Presentation by Baudry (2008)

Constraint/Consideration over Correlator Modes

- Bandwidth (31.25 MHz to 2 GHz)
- Central (or starting) frequency
- Resolution (or number of spectral points)
- Number of polarization products: 1 (AA or BB), 2 (AA & BB), or 4 (cross polarization products AB and BA also included)
- Improved sensitivity options: 4x4 bit correlation or double Nyquist modes (it is possible to specify both, but with very limited usefulness)

Reference : ALMA Memo, 556

ALMA Correlator Modes

Table 1 Mode chart with one baseband channel per quadrant being processed (Only AA or BB)

Mode #	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
1	32	2 GHz	8192	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
19	32	2 GHz	4096	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
38	32	2 GHz	2048	976 kHz	1.28 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
2	16	1 GHz	8192	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
20	16	1 GHz	4096	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
39	16	1 GHz	2048	488 kHz	0.64 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
53	16	1 GHz	1024	976 kHz	1.28 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
3	8	500 MHz	8192	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
21	8	500 MHz	4096	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
40	8	500 MHz	2048	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
54	8	500 MHz	1024	488 kHz	0.64 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
4	4	250 MHz	8192	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
22	4	250 MHz	4096	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
41	4	250 MHz	2048	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
55	4	250 MHz	1024	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
5	2	125 MHz	8192	15 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
23	2	125 MHz	4096	30 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
42	2	125 MHz	2048	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
56	2	125 MHz	1024	122 kHz	0.16 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
6	1	62.5 MHz	8192	7.6 kHz	0.01 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
24	1	62.5 MHz	4096	15 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
43	1	62.5 MHz	2048	30 kHz	0.04 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
57	1	62.5 MHz	1024	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
25	1	31.25 MHz	8192	3.8 kHz	0.005 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
58	1	31.25 MHz	2048	15 kHz	0.02 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
68	Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	3-bit x 3-bit	Nyquist	16 msec	1.00
71	Time Division Mode	2 GHz	256	7.8125 MHz	10.2 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

** Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Reference : ALMA Memo, 556

ALMA Correlator Modes

Table 1 Mode chart with one baseband channel per quadrant being processed (Only AA or BB)

Mode #	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
1	32	2 GHz	8192	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
19	32	2 GHz	4096	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
38	32	2 GHz	2048	976 kHz	1.28 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
2	16	1 GHz	8192	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
20	16	1 GHz	4096	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
39	16	1 GHz	2048	488 kHz	0.64 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
53	16	1 GHz	1024	976 kHz	1.28 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
3	8	500 MHz	8192	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
21	8	500 MHz	4096	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
40	8	500 MHz	2048	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
54	8	500 MHz	1024	488 kHz	0.64 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
4	4	250 MHz	8192	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
22	4	250 MHz	4096	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
41	4	250 MHz	2048	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
55	4	250 MHz	1024	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
5	2	125 MHz	8192	15 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
23	2	125 MHz	4096	30 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
42	2	125 MHz	2048	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
56	2	125 MHz	1024	122 kHz	0.16 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
6	1	62.5 MHz	8192	7.6 kHz	0.01 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
24	1	62.5 MHz	4096	15 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
43	1	62.5 MHz	2048	30 kHz	0.04 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
57	1	62.5 MHz	1024	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
25	1	31.25 MHz	8192	3.8 kHz	0.005 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
58	1	31.25 MHz	2048	15 kHz	0.02 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
68	Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	3-bit x 3-bit	Nyquist	16 msec	1.00
71	Time Division Mode	2 GHz	256	7.8125 MHz	10.2 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

** Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

*** dump time 1 msec for auto correlation mode

Reference : ALMA Memo, 556

ALMA Correlator Modes

(AA & BB)

Table 2 Mode chart with two baseband channels per quadrant processed with no polarization cross products.

Mode #	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
7	32	2 GHz	4096	488 kHz	0.64 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
8	16	1 GHz	4096	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
26	16	1 GHz	2048	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
44	16	1 GHz	1024	976 kHz	1.28 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
9	8	500 MHz	4096	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
27	8	500 MHz	2048	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
45	8	500 MHz	1024	488 kHz	0.64 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
59	8	500 MHz	512	976 kHz	1.28 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
10	4	250 MHz	4096	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
28	4	250 MHz	2048	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
46	4	250 MHz	1024	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
60	4	250 MHz	512	488 kHz	0.64 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
11	2	125 MHz	4096	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
29	2	125 MHz	2048	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
47	2	125 MHz	1024	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
61	2	125 MHz	512	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
12	1	62.5 MHz	4096	15 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
30	1	62.5 MHz	2048	30 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
48	1	62.5 MHz	1024	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
62	1	62.5 MHz	512	122 kHz	0.16 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
31	1	31.25 MHz	4096	7.6 kHz	0.01 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
63	1	31.25 MHz	1024	30 kHz	0.04 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
69	Time Division Mode	2 GHz	128	15.6 MHz	20.4 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

** Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Reference : ALMA Memo, 556

ALMA Correlator Modes

(AA & BB)

Table 2 Mode chart with two baseband channels per quadrant processed with no polarization cross products.

Mode #	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
7	32	2 GHz	4096	488 kHz	0.64 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
8	16	1 GHz	4096	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
26	16	1 GHz	2048	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
44	16	1 GHz	1024	976 kHz	1.28 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
9	8	500 MHz	4096	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
27	8	500 MHz	2048	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
45	8	500 MHz	1024	488 kHz	0.64 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
59	8	500 MHz	512	976 kHz	1.28 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
10	4	250 MHz	4096	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
28	4	250 MHz	2048	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
46	4	250 MHz	1024	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
60	4	250 MHz	512	488 kHz	0.64 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
11	2	125 MHz	4096	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
29	2	125 MHz	2048	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
47	2	125 MHz	1024	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
61	2	125 MHz	512	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
12	1	62.5 MHz	4096	15 kHz	0.02 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
30	1	62.5 MHz	2048	30 kHz	0.04 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
48	1	62.5 MHz	1024	61 kHz	0.08 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
62	1	62.5 MHz	512	122 kHz	0.16 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
31	1	31.25 MHz	4096	7.6 kHz	0.01 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
63	1	31.25 MHz	1024	30 kHz	0.04 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
69	Tune Division Mode	2 GHz	128	15.6 MHz	20.4 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

** Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Reference : ALMA Memo, 556

ALMA Correlator Modes

(AA, BB, AB, & BA)

Table 3 Mode chart with two baseband channels per quadrant processed with polarization cross products.

Mode #	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
13	32	2 GHz	2048	976 kHz	1.28 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
14	16	1 GHz	2048	488 kHz	0.64 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
32	16	1 GHz	1024	976 kHz	1.28 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
15	8	500 MHz	2048	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
33	8	500 MHz	1024	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
16	4	250 MHz	2048	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
34	4	250 MHz	1024	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
17	2	125 MHz	2048	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
35	2	125 MHz	1024	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
51	2	125 MHz	512	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
18	1	62.5 MHz	2048	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
36	1	62.5 MHz	1024	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
52	1	62.5 MHz	512	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
66	1	62.5 MHz	256	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
37	1	31.25 MHz	2048	15 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
67	1	31.25 MHz	512	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
70	Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

** Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Reference : ALMA Memo, 556

ALMA Correlator Modes

(AA, BB, AB, & BA)

Table 3 Mode chart with two baseband channels per quadrant processed with polarization cross products.

Mode #	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points	Spectral Resolution	Velocity resolution at 230 GHz	Correlation	Sample Factor	Minimum dump time*	Sensitivity**
13	32	2 GHz	2048	976 kHz	1.28 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
14	16	1 GHz	2048	488 kHz	0.64 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
32	16	1 GHz	1024	976 kHz	1.28 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
15	8	500 MHz	2048	244 kHz	0.32 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
33	8	500 MHz	1024	488 kHz	0.64 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
16	4	250 MHz	2048	122 kHz	0.16 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
34	4	250 MHz	1024	244 kHz	0.32 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
17	2	125 MHz	2048	61 kHz	0.08 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
35	2	125 MHz	1024	122 kHz	0.16 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
51	2	125 MHz	512	244 kHz	0.32 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
18	1	62.5 MHz	2048	30 kHz	0.04 km/s	2-bit x 2-bit	Nyquist	512 msec	0.88
36	1	62.5 MHz	1024	61 kHz	0.08 km/s	2-bit x 2-bit	Twice Nyquist	256 msec	0.94
52	1	62.5 MHz	512	122 kHz	0.16 km/s	4-bit x 4-bit	Nyquist	128 msec	0.99
66	1	62.5 MHz	256	244 kHz	0.32 km/s	4-bit x 4-bit	Twice Nyquist	64 msec	0.99
37	1	31.25 MHz	2048	15 kHz	0.02 km/s	2-bit x 2-bit	Twice Nyquist	512 msec	0.94
67	1	31.25 MHz	512	61 kHz	0.08 km/s	4-bit x 4-bit	Twice Nyquist	128 msec	0.99
70	Time Division Mode	2 GHz	64	31.25 MHz	40.8 km/s	2-bit x 2-bit	Nyquist	16 msec	0.88

* Assuming all products, all lags, transferred from correlator to Correlator Data Processor computer (in milli-seconds).

** Multiply numbers in this column by the 0.96 sensitivity imposed by the 3-bit input digitizer.

Reference : ALMA Memo, 556

Correlator Modes

1. Time Division Modes

(the correlator quadrant analyzes the entire 2GHz IF bandwidth with limited frequency resolution. This mode is well suited for continuum observation and is mandatory for fast dumping rates)

- total band width of 2 GHz (continuum only)
- filters divide up 1 ms of integration into 32 smaller time blocks
- planes process each time block, allows faster integration times of 16 ms
- only Nyquist sampling possible
- SR depends on no. of polzns (1, 2 or 4) and quantization level (2-bit or 3-bit)
- e.g., 128 x 15.6 MHz SR for 2 polzns

Correlator Modes

1. Time Division Modes

(the correlator quadrant analyzes the entire 2GHz IF bandwidth with limited frequency resolution. This mode is well suited for continuum observation and is mandatory for fast dumping rates)

- total band width of 2 GHz (continuum only)

- filters divide up 1 ms of integration into 32

- smaller time bins

Key consideration:
large/max continuum bandwidth
and/or fast time sample

- planes parallel to the time axis

- only Nyquist sampling

- SR depends on no. of polzns (1, 2 or 4) and

- quantization level (2-bit or 3-bit)

- e.g., 128 x 15.6 MHz SR for 2 polzns

Reference : Presentation by Di Francesco (2009); ALMA Memo 556

Correlator Modes (Examples)

Example of Time Division Modes (Band 6):

- 1 quadrant observes 2 GHz of LSB (230-232 GHz), 2 polzns, 2-bit, Nyq., get 128 spectral points each 15.6 MHz wide
- 1 quadrant observes 2 GHz of LSB (232-234 GHz), 4 polzns, 2-bit, Nyq., get 64 spectral points each 31.25 MHz wide
- 1 quadrant observes 2 GHz of USB (246-248 GHz), 2 polzns, 2-bit, Nyq., get 128 spectral points each 15.6 MHz wide
- 1 quadrant observes 2 GHz of USB (248-250 GHz), 4 polzns, 2-bit, Nyq., get 64 spectral points each 31.25 MHz wide

Reference : Presentation by Remijan (2009)

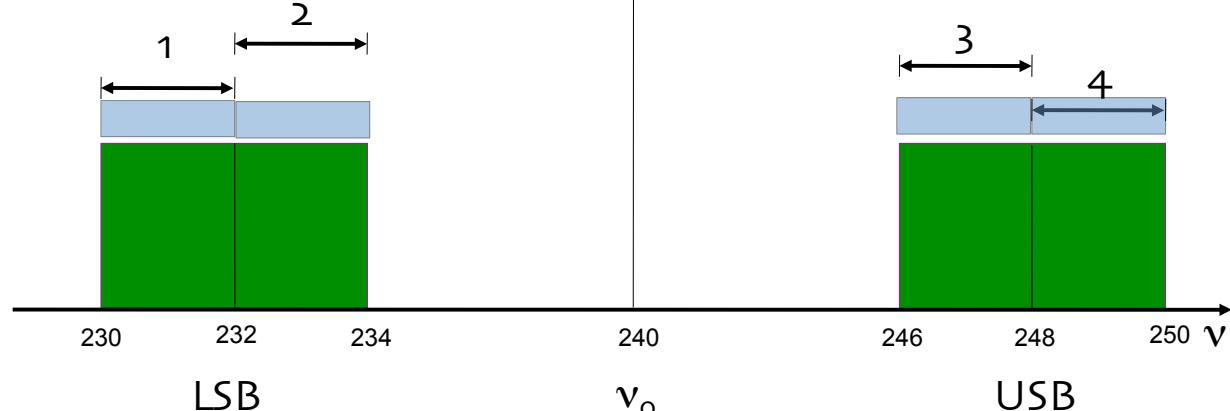
Correlator Modes

e.g., Band 6:

mode #69
2 pol, 2 bit,
Nyq.

2GHz
128 pt.
15.6 MHz

mode #70
4 pol, 2 bit,
Nyq.


2GHz
64 pt.
31.25 MHz

mode #69
2 pol, 2 bit,
Nyq.

2GHz
128 pt.
15.6 MHz

mode #70
4 pol, 2 bit,
Nyq.

2GHz
64 pt.
31.25 MHz

J1148+5251: an EoR paradigm with ALMA CO J=6-5

Wrong declination (though ideal for Madrid)!

But...

High sensitivity

12hr 1σ 0.2mJy

Wide bandwidth

3mm, 2 x 4 GHz IF

Default 'continuum' mode

Top: USB, 94.8 GHz

CO 6-5

HCN 8-7

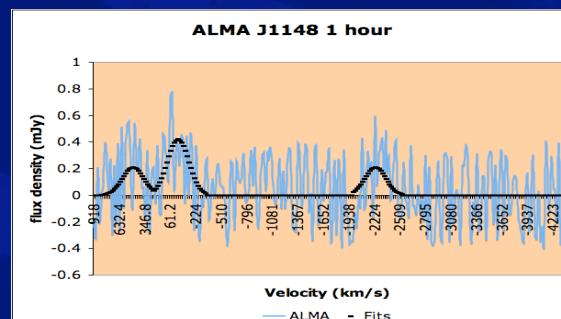
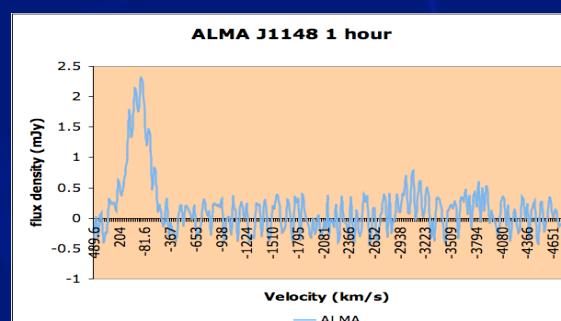
HCO+ 8-7

H₂CO lines

Lower: LSB, 86.8 GHz

HNC 7-6

H₂CO lines



C¹⁸O 6-5

H₂O 658GHz maser?

Secure redshifts

Molecular astrophysics

ALMA could observe CO-luminous galaxies (e.g. M51) at z~6.

J1148+5251: an EoR paradigm with ALMA

CO J=6-5

Wrong declination (though ideal for Madrid)!

But...

High sensitivity

12hr 1 σ 0.2mJy

Wide bandwidth

3mm, 2 x 4 GHz IF

Default 'continuum' mode

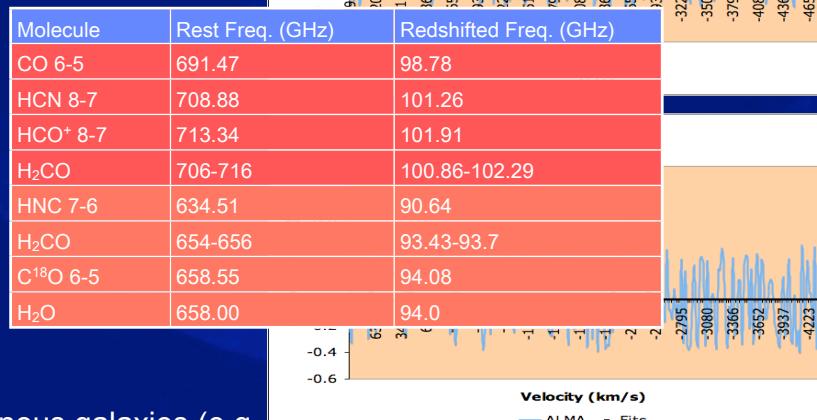
Top: USB, 94.8 GHz

CO 6-5

HCN 8-7

HCO+ 8-7

H₂CO lines


Lower: LSB, 86.8 GHz

HNC 7-6

H₂CO lines

C¹⁸O 6-5

H₂O 658GHz maser?

Secure redshifts

Molecular astrophysics

ALMA could observe CO-luminous galaxies (e.g. M51) at z~6.

Reference : Presentation by Wootten (2009)

Correlator Modes

2. Frequency Division Modes

(the correlator quadrant analyzes a portion (from 31.25 MHz to the entire 2GHz) of the IF bandwidth with high spectral resolution (up to 8192 spectral points.) Options to limit the sensitivity loss due to multiple quantization levels are available)

- filters used to obtain 31.25 MHz - 2 GHz BWs,
- all planes work on filtered BW to improve SR
- spectral resolution (SR) depends on:
 - no of polarizations (1, 2, or 4)
 - quantization level (2-bit or 4-bit)*
 - sampling rate (1 Nyq. or 2 Nyq.)
- 1 spectral "window"/"region" per quadrant
- slower integration times: 64-512 ms

* Correlation efficiency is 0.88 for 2-bit x 2-bit, increases to 0.94 (2N) or 0.99 (4-bit), yielding respectively 14% and 27% reductions in observing time.

Reference : Presentation by Di Francesco (2009);ALMA Memo 556

Correlator Modes

2. Frequency Division Modes

(the correlator quadrant analyzes a portion (from 31.25 MHz to the entire 2GHz) of the IF bandwidth with high spectral resolution (up to 8192 spectral points.) Options to limit the sensitivity loss due to multiple quantization levels are available)

- filters used to obtain 31.25 MHz - 2 GHz BWs.

a Key consideration:

- **uniform and continuous spectral coverage of a limited bandwidth within the 2GHz IF range**

- sampling rate (1 Nyq. or 2 Nyq.)
- 1 spectral “window”/“region” per quadrant
- slower integration times: 64-512 ms

* Correlation efficiency is 0.88 for 2-bit x 2-bit, increases to 0.94 (2N) or 0.99 (4-bit), yielding respectively 14% and 27% reductions in observing time.

Reference : Presentation by Di Francesco (2009);ALMA Memo 556

Correlator Modes

- a quick side-discussion on digitization:

- **Sampling**: signals ($v(t)$, $0 \leq v \leq \Delta v$) are lossless if sampled at the Nyquist rate, $\Delta t < 1/2(\Delta v)$

- **Quantization**: chosen level (2-bit, 4-bit) can induce offsets (noise), $v(t) \Rightarrow v(t) + \delta$

- higher sampling rate and quantization level better reproduce input signal, improves S/N, at a cost to SR (correlator resources)

- can choose sampling rate (1N or 2N, for factor 2 SR) and quantization level (2-, (3-), 4-bit, for factor 4 SR)

Reference : Presentation by Di Francesco (2009);ALMA Memo 556

- a quick side-dis
- **Sampling**: sig at the Nyquist
- **Quantization**: offsets (noise)
- higher sampling reproduce input SR (correlator)
- can choose sampling quantization

Quantization	Sampling Rate	S/N (digital)	
		S/N (digital)	S/N (continuous)
2-level (1 bit)	$2\Delta\nu$.64	
	$4\Delta\nu$.74	
3-level	$2\Delta\nu$.81*	
	$4\Delta\nu$.89	
4-level	$2\Delta\nu$.88	
	$4\Delta\nu$.94	
∞ -level (continuous)	$2\Delta\nu$	1.00	
	$4\Delta\nu$	1.00	

*VLA Case.
All cases assume rectangular bandpasses of width $\Delta\nu$, signal levels adjusted to maximize the signal-to-noise ratio, and small correlation coefficients.

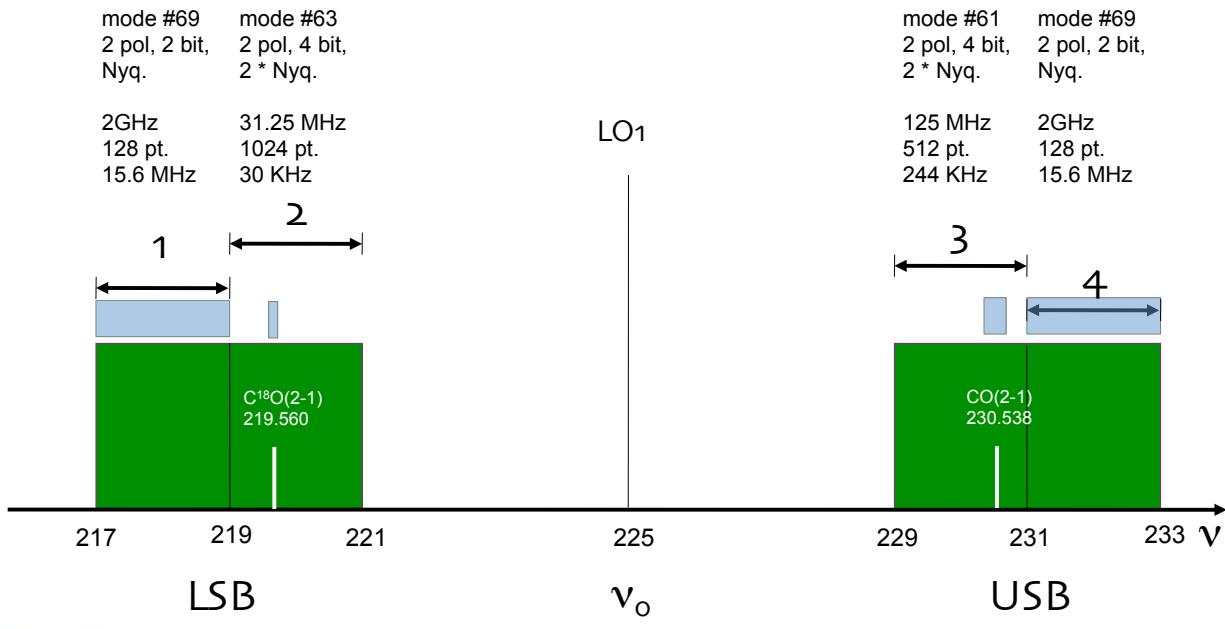
See also TMS 8.4

if sampled
induce
better
it to
2 SR) and
(SR)

Reference : Presentation by Di Francesco (2009); ALMA Memo 556

Correlator Modes

Example of Frequency Division Modes (Band 6):


- 1 quadrant observes (in USB) CO 2-1 at 230.538 GHz over 125 MHz; mode 61 yields 512 spectral points with 0.32 km s⁻¹ resolution, 2 polzns, 4-bit, 2 x Nyq.
- 1 quadrant observes (in LSB) C¹⁸O 2-1 at 219.560 GHz over 31.25 MHz; mode 63 yields 1024 spectral points with 0.04 km s⁻¹ resolution, 2 polzns, 4-bit, 2 x Nyq.
- 2 quadrants observe continuum over 2 GHz each (one in USB, one in LSB) in time division mode; mode 69 yields 128 spectral points, 20.4 km s⁻¹ resolution, 2 polzns, 2-bit, Nyq.

Reference : Presentation by Remijan (2009)

Correlator Modes

e.g., Band 6:

Correlator Modes

3. Multiple Region Modes

(One of the modes in the previous group is split into multiple disjoint spectra regions. Spectral resolution, polarization and sensitivity enhancement options must be the same for all regions.)

- for frequency division modes with BWs of 125 MHz - 1 GHz, can divide up BW...
- allows multiple lines within BW to be observed simultaneously within the 2 GHz baseband, if:
 - region BW must be a multiple of 62.5 MHz
 - other parameters (SR, no. of polzns, quant. level and sampling rate) must be the same for all regions
- trade-off between no. of regions and SR!

Correlator Modes

3. Multiple Region Modes

(One of the modes in the previous group is split into multiple disjoint spectra regions. Spectral resolution, polarization and sensitivity enhancement options must be the same for all regions.)

- for frequency range 125 MHz bandwidth-for resolution trade-off

- allows high and uniform resolution over simultaneously disjoint spectra regions within 2GHz IF

- region BW must be a multiple of 82.5 MHz

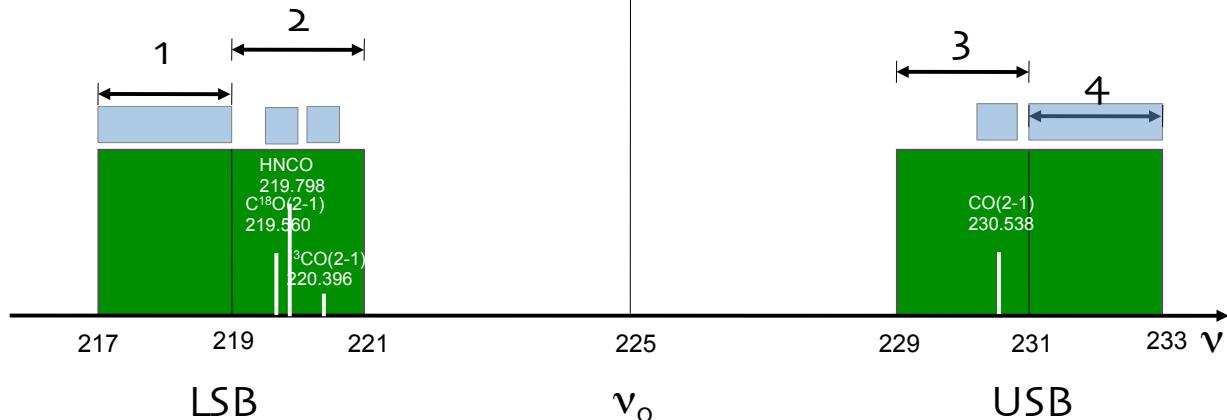
- other parameters (SR, no. of polzns, quant. level and sampling rate) must be the same for all regions

- trade-off between no. of regions and SR!

Reference : Presentation by Di Francesco (2009);ALMA Memo 556

Extragalactic CO Setup

Line	CO	13CO	C18O	HNCO	Cont
Frequency	230.538 USB	220.398 LSB	219.580 LSB	219.798 LSB	4 GHz USB&LSB
Resolution*	0.64 km/s	0.64 km/s	0.64 km/s	0.64 km/s	21 km/s
Window	Q1: 500 MHz	Q2: 500 MHz	Q2: 500 MHz	Q2: 500 MHz	Q3&4: 2 GHz
Channel decimation	To ~5 km/s	To ~5 km/s	To ~5 km/s	To ~5 km/s	Excise lines
Spatial resolution	1" (300m)	1"	1"	1"	1"


Reference : Presentation by Wootten (2009)

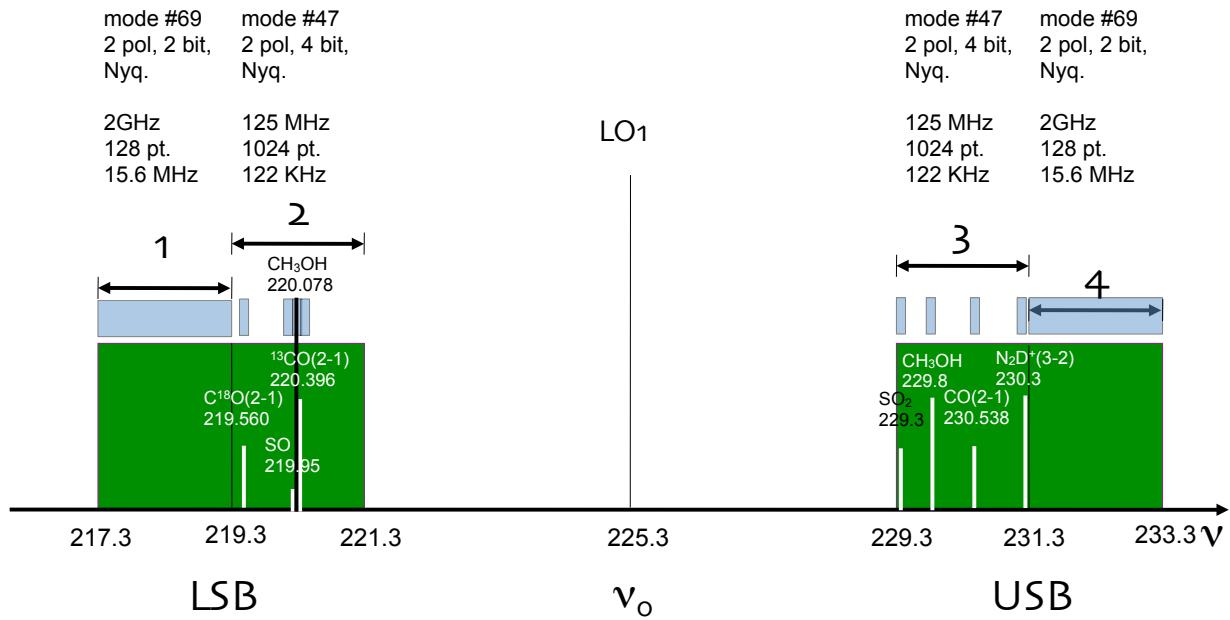
Correlator Modes

e.g., Band 6:

mode #69 mode #45
 2 pol, 2 bit,
 Nyq. 2 pol, 2 bit,
 2* Nyq.

2GHz 1 GHz
128 pt. 2048 pt.
15.6 MHz 488 KHz

Correlator Modes


Example of Multiple Region Modes (Band 6):

- 1 quadrant observes (in USB) uses mode 47, 125 GHz BW, 1024 spectral points at 0.16 km s^{-1} SR, 2 polzns, 4-bit, Nyq.:
 - 1/4 for CO 2-1 at 230.5 GHz,
 - 1/4 for N₂D+ 3-2 at 231.3 GHz,
 - 1/4 for CH₃OH 8₋₁-7₀ E at 229.8 GHz,
 - 1/4 for SO₂ 11(5,7) - 12(4,8) at 229.3 GHz,for 4 windows each with 256 spectral points (BW: 164 km s⁻¹)
- 1 quadrant observes (in LSB) C¹⁸O 2-1, ¹³CO 2-1, SO 5₆-4₅ and CH₃OH 8₀-7₁ E also in mode 47, as above
- 2 quadrants: LSB/USB continuum in time division mode (69)

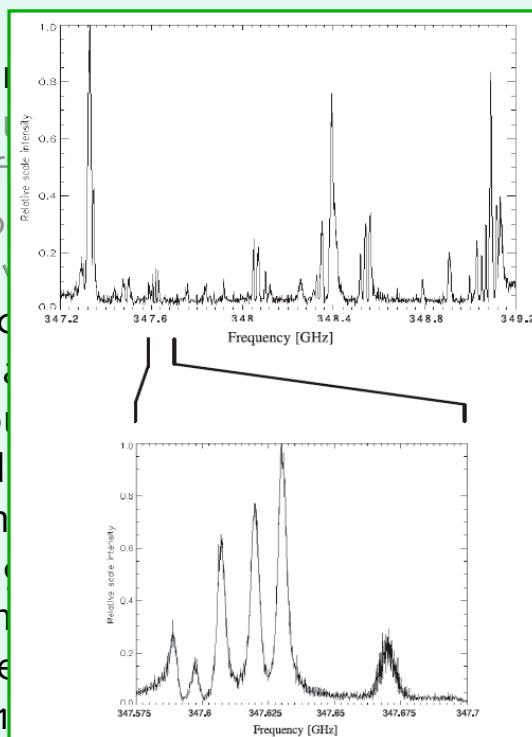
Correlator Modes

e.g., Band 6:

Correlator Modes

4. Multi-resolution Modes

(The correlator quadrant is split into independent subunits, each observing a specific spectral region. Different resolutions, bandwidths and polarization modes can be specified for each region. No sensitivity enhancement options are available.)


- implement frequency division modes over fewer than 32 correlator planes
- correlator resources can be fully divided up for multiple windows with different SR
- allows zoom in into features seen in wide band
- lower SR for a given BW
- only 2-bit quantization available, mostly 1 Nyq. available (three 2 Nyq. Modes)
- no more than 16 filters can be used!

Correlator Modes

4. Multi-resolution

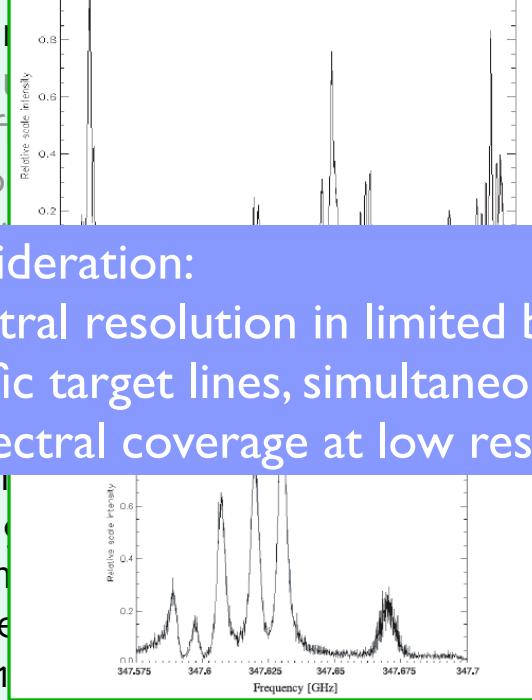
(The correlator quickly switches between different subunits, each with different resolutions, specified for each region. No sensitivity information is available.)

- implements frequency selection with more than 32 correlators
- correlator resolution is determined by multiple windows
- allows zoom in on specific frequency regions
- lower SR for a given bandwidth
- only 2-bit quantization is available (three levels)
- no more than 1000 subunits

ent subunits, each
esolutions,
cified for each
e available.)

ewer
or
and
by.

Reference : Presentation by Di Francesco (2009);ALMA Memo 556


Correlator Modes

4. Multi-resolution

(The correlator quickly switches between different subunits, each with different resolutions, specified for each region. No sensitivity information is available.)

Key consideration:

- implements frequency selection with high spectral resolution in limited bandwidth
- correlator resolution is determined by specific target lines, simultaneously with multi-resolution
- allows zoom in on specific frequency regions
- lower SR for a given bandwidth
- only 2-bit quantization is available (three levels)
- no more than 1000 subunits

ent subunits, each
esolutions,
cified for each
e available.)

ewer
or
and
by.

Reference : Presentation by Di Francesco (2009);ALMA Memo 556

Table 5 Multi-resolution modes with one baseband channel per quadrant being processed.

Mode #	Minimum size of correlator*	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points**	Correlation	Sample Factor
2	1/2	16	1 GHz	8192	2-bit x 2-bit	Nyquist
3	1/4	8	500 MHz	8192	2-bit x 2-bit	Nyquist
4	1/8	4	250 MHz	8192	2-bit x 2-bit	Nyquist
5	1/16	2	125 MHz	8192	2-bit x 2-bit	Nyquist
6	1/32	1	62.5 MHz	8192	2-bit x 2-bit	Nyquist
25	1/32	1	31.25 MHz	8192	2-bit x 2-bit	Twice Nyquist

Table 6 Multi-resolution modes with two baseband channels per quadrant with no polarization cross products.

Mode #	Minimum size of correlator*	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points**	Correlation	Sample Factor
9	1/2	8	500 MHz	4096	2-bit x 2-bit	Nyquist
10	1/4	4	250 MHz	4096	2-bit x 2-bit	Nyquist
11	1/8	2	125 MHz	4096	2-bit x 2-bit	Nyquist
12	1/16	1	62.5 MHz	4096	2-bit x 2-bit	Nyquist
31	1/16	1	31.25 MHz	4096	2-bit x 2-bit	Twice Nyquist

Table 7 Multi-resolution modes with two baseband channels per quadrant with polarization cross products.

Mode #	Minimum size of correlator*	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points**	Correlation	Sample Factor
16	1/2	4	250 MHz	2048	2-bit x 2-bit	Nyquist
17	1/4	2	125 MHz	2048	2-bit x 2-bit	Nyquist
18	1/8	1	62.5 MHz	2048	2-bit x 2-bit	Nyquist
37	1/8	1	31.25 MHz	2048	2-bit x 2-bit	Twice Nyquist

* Fraction of the correlator required to maintain the specified bandwidth with the minimum feasible resolution

** Utilizing 100% of the correlator

Reference : ALMA Memo, 556

Table 5 Multi-resolution modes with one baseband channel per quadrant being processed.

Mode #	Minimum size of correlator*	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points**	Correlation	Sample Factor
2	1/2	16	1 GHz	8192	2-bit x 2-bit	Nyquist
3	1/4	8	500 MHz	8192	2-bit x 2-bit	Nyquist
4	1/8	4	250 MHz	8192	2-bit x 2-bit	Nyquist
5	1/16	2	125 MHz	8192	2-bit x 2-bit	Nyquist
6	1/32	1	62.5 MHz	8192	2-bit x 2-bit	Nyquist
25	1/32	1	31.25 MHz	8192	2-bit x 2-bit	Twice Nyquist

Table 6 Multi-resolution modes with two baseband channels per quadrant with no polarization cross products.

Mode #	Minimum size of correlator*	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points**	Correlation	Sample Factor
9	1/2	8	500 MHz	4096	2-bit x 2-bit	Nyquist
10	1/4	4	250 MHz	4096	2-bit x 2-bit	Nyquist
11	1/8	2	125 MHz	4096	2-bit x 2-bit	Nyquist
12	1/16	1	62.5 MHz	4096	2-bit x 2-bit	Nyquist
31	1/16	1	31.25 MHz	4096	2-bit x 2-bit	Twice Nyquist

Table 7 Multi-resolution modes with two baseband channels per quadrant with polarization cross products.

Mode #	Minimum size of correlator*	Number of sub-channel filters	Total Bandwidth	Number of Spectral Points**	Correlation	Sample Factor
16	1/2	4	250 MHz	2048	2-bit x 2-bit	Nyquist
17	1/4	2	125 MHz	2048	2-bit x 2-bit	Nyquist
18	1/8	1	62.5 MHz	2048	2-bit x 2-bit	Nyquist
37	1/8	1	31.25 MHz	2048	2-bit x 2-bit	Twice Nyquist

* Fraction of the correlator required to maintain the specified bandwidth with the minimum feasible resolution

** Utilizing 100% of the correlator

Reference : ALMA Memo, 556

Table 8 Multi-resolution mode possibilities

Corr Mode Number	Mode Identifier				Spectral Channel Resolution for each polarization data set as a function of the fraction of correlator resources assigned in Multi-resolution Mode (Total #spectral channels per polarization data set in parenthesis)					
	BW	BITS	NYQUIST	POLZ	Full	1/2	1/4	1/8	1/16	1/32
2	1GHz	-	2x2	- 1N -	1BB	122 KHz (8192)	244 KHz (4096)	na	na	na
3	500MHz	-	2x2	- 1N -	1BB	61 KHz (8192)	122 KHz (4096)	244 KHz (2048)	na	na
4	250MHz	-	2x2	- 1N -	1BB	30.5 KHz (8192)	61 KHz (4096)	122 KHz (2048)	244 KHz (1024)	na
5	125MHz	-	2x2	- 1N -	1BB	15.3 KHz (8192)	30.5 KHz (4096)	61 KHz (2048)	122 KHz (1024)	244 KHz (512)
6	62.5MHz	-	2x2	- 1N -	1BB	7.63 KHz (8192)	15.3 KHz (4096)	30.5 KHz (2048)	61 KHz (1024)	122 KHz (512)
										244 KHz (256)
9	500MHz	-	2x2	- 1N -	2BB	122 KHz (4096)	244 KHz (2048)	na	na	na
10	250MHz	-	2x2	- 1N -	2BB	61 KHz (4096)	122 KHz (2048)	244 KHz (1024)	na	na
11	125MHz	-	2x2	- 1N -	2BB	30.5 KHz (4096)	61 KHz (2048)	122 KHz (1024)	244 KHz (512)	na
12	62.5MHz	-	2x2	- 1N -	2BB	15.3 KHz (4096)	30.5 KHz (2048)	61 KHz (1024)	122 KHz (512)	244 KHz (256)
										na
16	250MHz	-	2x2	- 1N -	2BB-P	122 KHz (2048)	244 KHz (1024)	na	na	na
17	125MHz	-	2x2	- 1N -	2BB-P	61 KHz (2048)	122 KHz (1024)	244 KHz (512)	na	na
18	62.5MHz	-	2x2	- 1N -	2BB-P	30.5 KHz (2048)	61 KHz (1024)	122 KHz (512)	244 KHz (256)	na
										na
25	31.25MHz	-	2x2	- 2N -	1BB	3.82 KHz (8192)	7.63 KHz (4096)	15.3 KHz (2048)	30.5 KHz (1024)	61 KHz (512)
										122 KHz (256)
31	31.25MHz	-	2x2	- 2N -	2BB	7.63 KHz (4096)	15.3 KHz (2048)	30.5 KHz (1024)	61 KHz (512)	122 KHz (256)
37	31.25MHz	-	2x2	- 2N -	2BB-P	15.3 KHz (2048)	30.5 KHz (1024)	61 KHz (512)	122 KHz (256)	na
										na

Table 8 Multi-resolution mode possibilities

Corr Mode Number	Mode Identifier				Spectral Channel Resolution for each polarization data set as a function of the fraction of correlator resources assigned in Multi-resolution Mode (Total #spectral channels per polarization data set in parenthesis)					
	BW	BITS	NYQUIST	POLZ	Full	1/2	1/4	1/8	1/16	1/32
2	1GHz	-	2x2	- 1N -	1BB	122 KHz (8192)	244 KHz (4096)	na	na	na
3	500MHz	-	2x2	- 1N -	1BB	61 KHz (8192)	122 KHz (4096)	244 KHz (2048)	na	na
4	250MHz	-	2x2	- 1N -	1BB	30.5 KHz (8192)	61 KHz (4096)	122 KHz (2048)	244 KHz (1024)	na
5	125MHz	-	2x2	- 1N -	1BB	15.3 KHz (8192)	30.5 KHz (4096)	61 KHz (2048)	122 KHz (1024)	244 KHz (512)
6	62.5MHz	-	2x2	- 1N -	1BB	7.63 KHz (8192)	15.3 KHz (4096)	30.5 KHz (2048)	61 KHz (1024)	122 KHz (512)
										244 KHz (256)
9	500MHz	-	2x2	- 1N -	2BB	122 KHz (4096)	244 KHz (2048)	na	na	na
10	250MHz	-	2x2	- 1N -	2BB	61 KHz (4096)	122 KHz (2048)	244 KHz (1024)	na	na
11	125MHz	-	2x2	- 1N -	2BB	30.5 KHz (4096)	61 KHz (2048)	122 KHz (1024)	244 KHz (512)	na
12	62.5MHz	-	2x2	- 1N -	2BB	15.3 KHz (4096)	30.5 KHz (2048)	61 KHz (1024)	122 KHz (512)	244 KHz (256)
										na
16	250MHz	-	2x2	- 1N -	2BB-P	122 KHz (2048)	244 KHz (1024)	na	na	na
17	125MHz	-	2x2	- 1N -	2BB-P	61 KHz (2048)	122 KHz (1024)	244 KHz (512)	na	na
18	62.5MHz	-	2x2	- 1N -	2BB-P	30.5 KHz (2048)	61 KHz (1024)	122 KHz (512)	244 KHz (256)	na
										na
25	31.25MHz	-	2x2	- 2N -	1BB	3.82 KHz (8192)	7.63 KHz (4096)	15.3 KHz (2048)	30.5 KHz (1024)	61 KHz (512)
										122 KHz (256)
31	31.25MHz	-	2x2	- 2N -	2BB	7.63 KHz (4096)	15.3 KHz (2048)	30.5 KHz (1024)	61 KHz (512)	122 KHz (256)
37	31.25MHz	-	2x2	- 2N -	2BB-P	15.3 KHz (2048)	30.5 KHz (1024)	61 KHz (512)	122 KHz (256)	na
										na

For example, the three modes highlighted above have the same combination of bandwidth and spectral resolution, but provide different polarization products (AA v.s. AA+BB v.s. AA+BB+AB+BA) using different fraction of correlator resources.

Correlator Modes

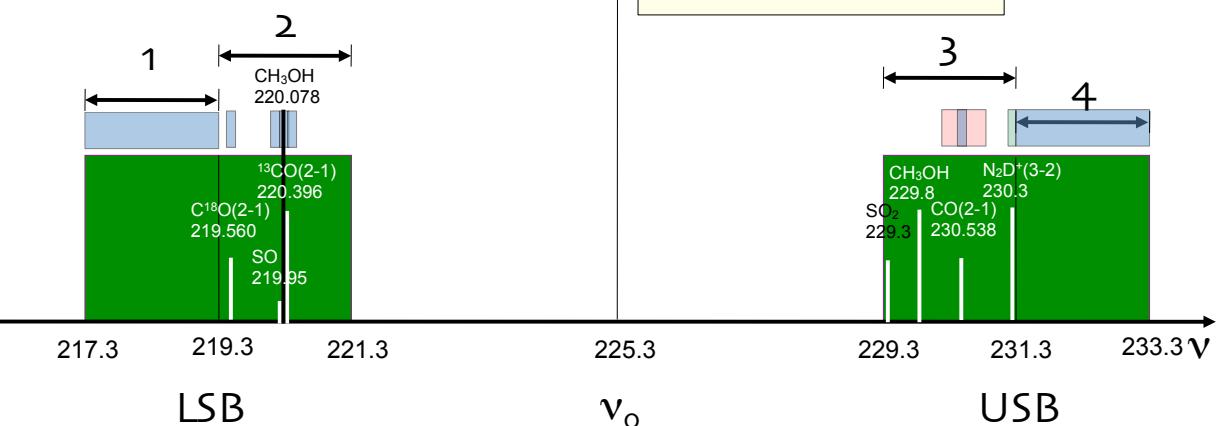
Example of Multi-Resolution Modes (Band 6):

- 1 quadrant observes (in USB) uses:
 - mode 3, 500 GHz BW with 8 planes, gets 2048 spectral points, 1 polzn, 2-bit, Nyq. (wide-band?)
 - mode 6, 62.5 MHz BW with 8 planes, gets 2048 spectral points, 1 polzn, 2-bit, Nyq. (CO 2-1)
 - mode 25, 31.25 MHz BW with 16 planes, gets 4096 spec. points, 1 polzn, 2-bit, 2 x Nyq. (N_2D^+ 3-2)
 - windows put anywhere in the 2 GHz input baseband
 - total BW used < 1 GHz (16 filters; NB: if mode 2 is included, filters are shared; BW of m2 window < 1 GHz)

each of other 3 quadrants are set up independently!

Reference : Presentation by Di Francesco (2009); ALMA Memo 556

Correlator Modes


e.g., Band 6:

mode #69 mode #47
2 pol, 2 bit, 2 pol, 4 bit,
Nyq. Nyq.

2GHz 125 MHz
128 pt. 1024 pt.
15.6 MHz 122 KHz

mode #3 mode #6 mode #25
1 pol, 2 bit, 1 pol, 2 bit, 1 pol, 2 bit,
Nyq. Nyq. 2 * Nyq.
(1/4) (1/4) (1/2)
500 MHz 62.5 MHz 31.25 MHz
2048 pt. 2048 pt. 4096 pt.
244 KHz 30.5 KHz 7.63 KHz

mode #69
2 pol, 2 bit,
Nyq.
2GHz
128 pt.
15.6 MHz

Remark

- ALMA correlator is a very powerful and flexible part of the whole instrument
- Its operation modes sound a bit frightening at the beginning, but may not be too complicated after all
- To fully utilize/mater its power, however, it will require well practice and wise planning
 - OT presumably will help to guide users through

Remark

- ALMA correlator is a very powerful and flexible part of the whole instrument
- Its operation modes sound a bit frightening at the beginning, but may not be too complicated after all
- To fully utilize/mater its power, however, it will require well practice and wise planning
 - OT presumably will help to guide users through
- Some issues:
 - baseband/IF placement for band 6?
 - DSB v.s. 2SB
 - supported modes and multi-resolution OK at ES(?)